Hrvatski Groatian

2020

International Symposium on Agriculture Medunarodni Simpozij

February 16 - 21, 2020 16,-21, veljače 2020, Croatia / Hrvatska Vodice, Olympia Sky Hotel Proceedings Zbornik radova

Proceedings

55 Hrvatski

15 Međunarodni Simpozij Agronoma

Zbornik radova

Impressum

Izdavač Published by

Sveučilište u Zagrebu, Agronomski fakultet, Zagreb, Hrvatska University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Glavni urednici - Editors in Chief

Boro Mioč Ivan Širić

Uređivački odbor - Editorial Board

Aleksandra Perčin Josip Juračak Hrvoje Šarčević Nina Toth Darko Uher Daniel Matulić Miljenko Konjačić Marko Karoglan Goran Fruk Vanja Jurišić

Tehnički urednici - Technical Editors

Ivan Širić

Darija Bendelja Ljoljić

Oblikovanje, prijelom

Design, typeset

Martin Šok, www.martinsok.com

Tisak Print

Grafomark d.o.o., Zagreb

Naklada - Edition

40

ISSN 2459-5543

Web page

http://sa.agr.hr

Službeni jezici Simpozija su hrvatski i engleski. The official languages of the Symposium are Croatian and English.

Sveučilište u Zagrebu Agronomski fakultet

;

Fakultet agrobiotehničkih znanosti, Sveučilište Josipa Jurja Strossmayera u Osijeku Balkan Environmental Association B.E.N.A
Agronomski i prehrambeno-tehnološki fakultet Sveučilišta u Mostaru, Bosna i Hercegovina Akademija poljoprivrednih znanosti
Biotehniška fakulteta Univerze v Ljubljani, Slovenija
Fakulteta za kmetijstvo in biosistemske vede, Univerza v Mariboru, Slovenija
Hrvatska agronomska komora
ICA Regional Network for Central and South Eastern Europe (CASEE)
Sveučilište Josipa Jurja Strossmayera u Osijeku
Sveučilište u Zagrebu
Sveučilište u Zagrebu Prehrambeno-biotehnološki fakultet

pod pokroviteljstvom

Sveučilište u Zagrebu Šumarski fakultet

Ministarstva znanosti i obrazovanja Republike Hrvatske Ministarstva poljoprivrede Republike Hrvatske Ministarstva zaštite okoliša i energetike Republike Hrvatske

a u suradnji s

Alltech Hrvatska
Bc Institutom za oplemenjivanje i proizvodnju bilja
Gradskim uredom za poljoprivredu i šumarstvo Grada Zagreba
Hrvatskim agronomskim društvom, Zagreb
Hrvatskim lovačkim savezom
Hrvatskom agencijom za poljoprivredu i hranu, Osijek
Hrvatskom gospodarskom komorom
Institutom za jadranske kulture i melioraciju krša, Split
Institutom za poljoprivredu i turizam, Poreč
Poljoprivrednim institutom Osijek
Sveučilištem u Zadru
Šibensko-kninskom županijom
Veleučilištem u Požegi
Veleučilištem u Slavonskom Brodu
Visokim gospodarskim učilištem u Križevcima

organiziraju

55. hrvatski i 15. međunarodni simpozij agronoma 16. - 21. veljače 2020. godine, Vodice, Hrvatska

University of Zagreb Faculty of Agriculture

and

Faculty of Agrobiotehnical Sciences, Josip Juraj Strossmayer University of Osijek
Balkan Environmental Association B.E.N.A
Faculty of Agriculture and Food Technology, University of Mostar, Bosnia and Herzegovina
Academy of Agricultural Sciences
Biotechnical Faculty, University of Ljubljana, Slovenia
Faculty of Agriculture and Life Sciences, University of Maribor, Slovenia
Croatian Chamber of Agriculture
The ICA Regional Network for Central and South Eastern Europe (CASEE)
"Josip Juraj Strossmayer" University of Osijek
University of Zagreb
University of Zagreb Faculty of Food Technology and Biotechnology
University of Zagreb Faculty of Forestry

under the patronage of the

Ministry of Science and Education of the Republic of Croatia Ministry of Agriculture of the Republic of Croatia Ministry of Environment and Energy of the Republic of Croatia

in collaboration with

Alltech Croatia
Bc Institute for breeding and seed production
City Office for Agriculture and Forestry, City of Zagreb
Croatian Agronomy Society, Zagreb
Croatian Hunting Federation
Croatian Agency for Agriculture and Food, Osijek
Croatian Chamber of Economy
Institute of Adriatic Crops and Karst Reclamation, Split
Institute of Agriculture and Tourism, Poreč
Agricultural Institute Osijek
University of Zadar
Šibenik-Knin County
College of Požega
College of Slavonski Brod
College of Agriculture at Križevci

organize

55th Croatian & 15th International Symposium on Agriculture February 16 – 21, 2020. Vodice, Croatia

Organizacijski odbor Organizing Committee

Predsjednik | Chairman

Zoran Grgić, Croatia

Članovi | Members

Krunoslav Zmaić, Croatia

Ivan Ostojić, Bosnia and Hercegovina

Frane Tomić, Croatia

Mariana Golumbeanu, Greece

Michal Lostak, Czech

Marijana Ivanek Martinčić, Croatia

Emil Erjavec, Slovenia

Branko Kramberger, Slovenia

Josip Haramija, Croatia Ivan Širić, Croatia

Vlado Guberac, Croatia

Damir Boras, Croatia

Dijana Vican, Croatia

Blaženka Divjak, Croatia

Marija Vučković, Croatia Tomislav Ćorić, Croatia

Emil Tuk, Croatia

Jadranka Frece, Croatia

Tibor Pentek, Croatia

Krunoslav Dugalić, Croatia

Luka Burilović, Croatia

Luka Burnovic, Croatia

Krunoslav Mirosavljević, Croatia

Borislav Miličević, Croatia

Zdravko Barać, Croatia

Katja Žanić, Croatia

Dean Ban, Croatia

Goran Pauk, Croatia

Zvonimir Zdunić, Croatia

Zdravko Tušek, Croatia

Lovorka Blažević, Croatia

Josip Jukić, Croatia

Ivica Ikić, Croatia

Đuro Dečak, Croatia

Ivica Matanić, Croatia

Darija Bendelja Ljoljić, Croatia

Znanstveni odbor

Scientific Committee

Predsjednik | Chairman

Darko Vončina

Članovi | Members

Adrijana Filipović

Aleksandra Perčin

Branka Svitlica

Črtimir Rozman

Daniel Matulić

Darko Uher

Dinko Jelkić

Dragan Kovačević

Goran Fruk

Hrvoje Šarčević

Ivana Rukavina

Josip Juračak

josip jaracan

Marko Karoglan

Mato Drenjančević Metka Hudina

Mictika i idaliia

Miljenko Konjačić

Mirjana Hruškar

Mirta Rastija

Nina Toth

Pero Mijić

Siniša Srečec

Slaven Zjalić

Smiljana Goreta Ban

Sonja Petrović

Sonja Vila

Teuta Benković Lačić

Tihana Sudarić

Tihomir Florijančić

Tomislav Vinković

Vanja Jurišić

Vladimir Ivezić

Vlatka Rozman

Yusuf Kurucu

Zdravko Mataton

Zuravko iviatatori

Zvonko Antunović

Tajnik | Secretary

Boro Mioč

Effects of nitrogen deficiency on some physiological parameters and root traits of three Croatian common bean landraces

Ana Nimac1, Ivana Štajcer2, Zlatko Šatović1,2, Klaudija Carović-Stanko1,2, Boris Lazarević1,2

¹Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia (e-mail: animac@agr.hr)

Abstract

Common bean (*Phaseolus vulgaris* L.) is one of the most important legumes in the world and the lack of nitrogen in its cultivation can cause major negative changes leading to decrease in leaf protein content, such as RuBisCO, which causes a decrease in photosynthesis capacity and ultimately results in leaf damage and senescence. The aim of this study was to analyze the effect of nitrogen deficiency with 'N-' treatment, Hoagland solution with no added nitrogen, on the chlorophyll content index, 'greenness', digital biomass, quantum yield of photosystem II (Y (II)), maximum quantum yield of photosystem II (F_v/F_m) and the root system traits of Croatian common bean landraces 'Trešnjevac', 'Zelenčec' and 'Biser'. Nitrogen deficiency treatment caused a decrease in the chlorophyll content index and 'greenness', digital biomass and changes in root architecture for all three landraces. The landrace 'Zelenčec' developed the largest root volume, and the landrace 'Trešnjevac' the largest average root diameter, digital biomass and highest chlorophyll content index in nitrogen treatment (N-).

Keywords: Common bean, nitrogen deficiency, root architecture, photochemical reactions

Introduction

For normal physiological functions and development, plants need macro and micro nutrients. The lack of nutrients such as nitrogen, potassium and phosphorus is a big problem in agricultural production (Aleksandrov, 2019). Nitrogen is a major component of amino acids and is important in biochemistry of photosynthetic pigments and co-enzymes (Aleksandrov, 2019; Maathuis, 2009)magnesium, nitrogen, phosphorous, potassium and sulfur in relatively large amounts (>0.1% of dry mass. Common bean (Phaseolus vulgaris L.) forms a relationship with nitrogen-fixing rhizobia and through a process termed symbiotic nitrogen fixation provides the plant a source of nitrogen (George and Singleton, 1992; Wilker et al., 2019), but efficiency of process depends on soil fertility (Muñoz-Azcarate et al., 2017) and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the

²University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean,"author":[{"droppingparticle":"","family":"Muñoz-Azcarate","given":"Olaya","non-dropping-particle":"","parse-names":false,"suffix":""},{"dr opping-particle":"","family":"M González","given":"Ana","non-dropping-particle":"","parse-names":false,"suffix":""},{"d ropping-particle":"","family": "Santalla","given": "Marta","non-dropping-particle": "","parse-names": false, "suffix": ""}],"co ntainer-title":"AIMS Microbiology", id": "ITEM-1", issue": "3", issued": ["date-parts": [["2017"]]}, page": "435-466", publisher": "American Institute of Mathematical Sciences (AIMS. Because of the variability of nitrogen that can be ensured through symbiotic fixation it is necessary to add nitrogen as mineral fertilization for the initial growth of the beans (Muñoz-Azcarate et al., 2017) and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean," author":[{"dropping-opping-particle":"","family":"M González","given":"Ana","non-dropping-particle":"","parse-names":false,"suffix":""},{"d ropping-particle":"","family": "Santalla","given": "Marta","non-dropping-particle":"","parse-names":false,"suffix":""}],"co ntainer-title":"AIMS Microbiology", id": "ITEM-1", issue": "3", issued": {"date-parts": [["2017"]]}, page": "435-466", publisher": "American Institute of Mathematical Sciences (AIMS. Assuming that N persists in the root zone, N deficiency can act as external signal that affects root growth and development (Muñoz-Azcarate et al., 2017)and the most important legume for direct consumption by millions of people, especially in developing countries. It is a promiscuous host legume in terms of nodulation, able to associate with a broad and diverse range of rhizobia, although the competitiveness for nodulation and the nitrogen fixation capacity of most of these strains is generally low. As a result, common bean is very inefficient for symbiotic nitrogen fixation, and nitrogen has to be supplied with chemical fertilizers. In the last years, symbiotic nitrogen fixation has received increasing attention as a sustainable alternative to nitrogen fertilizers, and also as a more economic and available one in poor countries. Therefore, optimization of nitrogen fixation of bean-rhizobia symbioses and selection of efficient rhizobial strains should be a priority, which begins with the study of the natural diversity of the symbioses and the rhizobial populations associated. Natural rhizobia biodiversity that nodulates common bean may be a source of adaptive alleles acting through phenotypic plasticity. Crosses between accessions differing for nitrogen fixation may combine alleles that never meet in nature. Another way to discover adaptive genes is to use association genetics to identify loci that common bean plants use for enhanced biological nitrogen fixation and, in consequence, for marker assisted selection for genetic improvement of symbiotic nitrogen fixation. In this review, rhizobial biodiversity resources will be discussed, together with what is known about the loci that underlie such genetic variation, and the potential candidate genes that may influence the symbiosis' fitness benefits, thus achieving an optimal nitrogen fixation capacity in order to help reduce reliance on nitrogen fertilizers in common bean.","author":[{"dropping-particle":"","family":"Muñoz-Azcarate","given": "Olaya","non-dropping-particle": "","parse-names": false, "suffix": ""}, {"droppingparticle":"", family": "M González", given": "Ana", "non-dropping-particle": "", "parse-names": false, "suffix": ""}, {"droppi ng-particle":"","family": "Santalla","given": "Marta","non-dropping-particle":"","parse-names":false,"suffix":""}],"contain er-title":"AIMS Microbiology","id":"ITEM-1","issue":"3","issued":{"date-parts":[["2017"]]},"page":"435-466", publisher": "American Institute of Mathematical Sciences (AIMS. Certain morphological traits such as length, volume, ramification and root diameter, can increase the efficiency of the root in nutrient acquisition from the soil (Lazarević, 2018; Lynch, 2013; Sinclair and Rufty, 2012)root systems with rapid exploitation of deep soil would

optimize water and N capture in most maize production environments. The ideotype Specific phenes that may contribute to rooting depth in maize include (a. The need for nitrogen is also increased at the end of the growing season due to the synthesis of proteins in the seed (Sinclair and Rufty, 2012)improved plant genetics is viewed as the path to increased crop yields. However, in this manuscript, we argue that yield increases most often result from a combination of improved genetics and increased availability of nitrogen and water resources. At this time, it is likely that resource availability is the main impediment to yield increase in many cropping systems. In developing regions, it appears that nitrogen availability limits crop yield. In developed regions, rainfall and water availability commonly impose a substantial constraint on further crop yield increase. Strategies are examined to enhance resource accumulation and use in cropping systems of the future. Elsevier B.V.", author": [{"dropping-particle": "", family": "Sinclair", given": "Thomas R.", non-dropping-particle": "", parse-names ":false,"suffix":""},{"dropping-particle":"","family":"Rufty","given":"Thomas W.","non-dropping-particle":"","parse-nam es":false,"suffix":""}],"container-title":"Global Food Security","id":"ITEM-1","issue":"2","issued":{"date-parts":[["2012"," 12"]]},"page":"94-98","title":"Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics","type": "article", "volume": "1"}, "uris": ["http://www.mendeley.com/documents/?uuid=58beb228-fa18-3d4d-9353-5a1b6dea9871"]}],"mendeley":{"formattedCitation":"(Sinclair & Rufty, 2012. Because of nitrogen deficiency in the soil, common bean plants become weaker and more susceptible to diseases, insects and adverse weather conditions (Wilker et al., 2019). Under nitrogen deficiency conditions breakdown of RuBisCO occurs, which leads to decrease in photosynthetic rate and reduction of plant growth (Aleksandrov, 2019).

Materials and methods

Plant material and experimental set up

The seeds of traditional Croatian common bean landraces; 'Trešnjevac', 'Zelenčec' and 'Biser' were obtained from the Department of Seed Science and Technology Collection at University of Zagreb Faculty of Agriculture. Experiment was conducted in a greenhouse. Seeds were surface-sterilized using 1.5% sodium hypochlorite for five minutes and 70% ethanol for 30 seconds and then washed with distilled water three times. The experiment was set in randomized design with three replications. Seeds were sown into 2L plastic pots filled with vermiculite. Three seeds were planted in each pot and 15 days after emergence two plants were removed. Half of the plants was irrigated with ½ Hoagland solution (N+) and the other half with ½ Hoagland solution without nitrogen (N-) (Hoagland and Arnon, 1950).

Measurements

Leaf chlorophyll content index (CCI), greenness (GR), digital biomass (DB) and chlorophyll fluorescence parameters maximum quantum yield of PSII (F_v/F_m) and quantum yield of PSII (Y(II)) were measured non-destructively once a week during four weeks of experiment (measurement time) on the same plants. Chlorophyll content index was measured on the first fully expanded leaf from the top of the plant (CCM-200, Opti-Sciences Inc, USA) and chlorophyll fluorescence measurements were done in dark and light adapted leaves using modulated fluorometers (Plant Stress Kit, Opti-Sciences Inc, USA). GR and DB were measured using PlantEye multispectral 3D scanner (Phenospex B.V., The Netherlands). At the end of the experiment roots were washed from the substrate and scanned with an Epson Perfection V700 scanner (Seiko Epson Corporation, Nagano, Japan). Root images were used to analyze root morphological traits (length, volume, average diameter and number of tips) using WinRHIZO Pro software (Regent Instruments Inc., Quebec, QC, Canada).

Statistical analysis

The analysis of variance (ANOVA) was conducted in order to determine effect of nitrogen treatment, genotype, measurement time on measured physiological traits and effect of nitrogen treatment and genotype on root system traits. The general linear model in R software (R core team, 2017) was used and mean differences between the values of the variables were determined by the Tukey test (P < 0.05).

Results and discussion

N- caused significant decrease (P<0.01) of CCI through measurement time in all three examined common bean landraces (data not shown). Hence, the lowest CCI was observed in last week of measurement time for all three landraces (Figure 1). The decrease of GR through measurement time was also observed where N- significantly (P<0.01) decreased GR (data not shown). DB has been calculated as the product of height and 3D leaf area assuming that the plant is a regular body of which the volume can be computed by taking into account height and length. Decrease in DB in last week of measurement occurred as a result of epinasty of leaves which can be caused by stress conditions (Lazarević and Poljak, 2019), in this case nitrogen deficiency stress and changes in environmental conditions while measuring (transferring plants from greenhouse to phenotyping laboratory). Lowered DB was observed in all weeks of measurement time for plants grown in N- compared to N+ (Figure 2). The differences among landraces in DB have also been observed where landrace 'Trešnjevac' both in N+ and N- had the largest DB, and the landrace 'Biser' had the smallest. N- reduced (P<0.05) F_v/F_m through the measurement time on average for 14% (data not shown). No significant differences have been observed for the parameter Y(II).

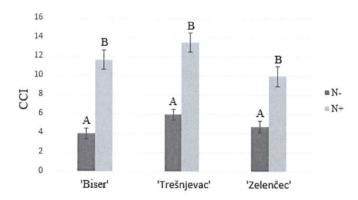


Figure 1. Chlorophyll content index (CCI) of three Croatian common bean landraces grown with (N+) or without nitrogen (N-). Vertical bars denote mean \pm S.E. of means.

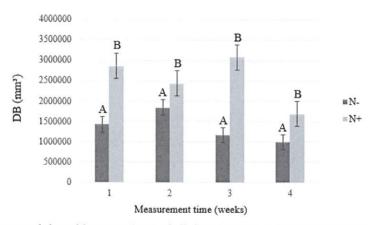


Figure 2. Differences in total digital biomass (DB) of all three genotypes between nitrogen treatment (N-) and control (N+) through measurement time. Vertical bars denote mean \pm S.E. of means.

The differences among genotypes for root traits volume (V) and average root diameter (D) and between N+ and N- for traits length (L), D, number of tips (NT) have been observed (Table 1) (Figure 3). The interaction genotype x treatment showed significant negative effect on root trait V for all three landraces (Table 1). The landrace 'Zelenčec' has developed largest V (39.8 cm³) followed by landrace 'Trešnjevac' (38.75 cm³), while landrace 'Biser' developed the root with smallest V (18.68 cm³) in N-. The landrace 'Trešnjevac' developed root with larger D (0.48 mm) compared to landrace 'Zelenčec' (0.46 mm) and the landrace 'Biser' (0.39 mm) in N-.

	DF	L (cm)	V (cm³)	D (mm)	NT
Genotype	2	ns	*	***	ns
Treatment	1	*	ns	*	***
Genotype x Treatment	2	ns	*	ns	ns

Table 1. Analysis of variance (ANOVA) results for measured root traits

L (cm) – length, V (cm³) – root volume, D (mm) – average root diameter, NT – number of tips, DF – degrees of freedom; ns- not significant; *- significant at P < 0.05, **- significant at P < 0.01.

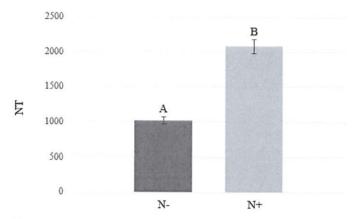


Figure 3. Total number of tips at the end of the experiment for control (N+) and nitrogen treatment (N-). Vertical bars denote mean \pm S.E. of means.

Taken together, results of this study indicate that nitrogen deficiency reduced DB of all three genotypes. The decrease of CCI was followed by lowered GR in N-. Lima et al. (1999)isolated or in combination, on leaf gas exchange and fast chlorophyll (Chl reported similar reduction of CCI in 28 days old Negrito bean variety irrigated with low-dose nitrogen, compared to plants irrigated with control ('N+' Hoagland's solution). NT was significantly lowered in nitrogen deficiency treatment. The similar results occurred in nitrogen deficiency experiment with soybean conducted by Castell (2018) where N-deficient soybean had smaller root system; diameter of roots, evidence of root hairs, depth of taproot. While some studies, in a term of photosystem II (PSII) photochemistry, have demonstrated that N-deficiency has no effect on the maximum quantum yield of PSII (Khamis et al., 1990), others have shown that the lack of nitrogen reduces the maximum quantum yield of PSII photochemistry (F_v/F_m), indicating that N-deficiency causes damage to PSII (Huang et al., 2004; Verhoeven et al., 1997) which also occurred in this research.

Conclusions

Nitrogen deficiency decreased the CCI, GR and DB of common bean plants of all three landraces. Through the experiment the small changes of F_v/F_m occurred which can indicate that nitrogen deficiency caused stress that affected photosystem II in a dark adapted state. The changes in root architecture were observed through the reduction in L, V, D and NT when exposed to nitrogen deficiency stress. The landrace 'Zelenčec' developed the largest V, and the landrace 'Trešnjevac' the largest D, DB and highest CCI in N-.

Acknowledgement

This research has been funded/supported by the project KK.01.1.1.01.0005 Biodiversity and Molecular Plant Breeding, Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

References

- Aleksandrov V. (2019). Identification of nutrient deficiency in bean plants by prompt chlorophyll fluorescence measurements and Artificial Neural Networks. BioRxiv, 664235.
- Castell S. (2018). Soybean Nitrogen Deficiency: Soil Factors and Plant Response. Retrieved from https://extension.entm.purdue.edu/newsletters/pestandcrop/article/soybean-nitrogen-deficiency-soil-factors-and-plant-response/
- George T., Singleton P. W. (1992). Nitrogen Assimilation Traits and Dinitrogen Fixation in Soybean and Common Bean. Agronomy Journal.
- Hoagland D. R., Arnon D. I. (1950). The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347. In Circular. California Agricultural Experiment Station.
- Lazarević B. (2018). Morfološke karakteristike korijena i njihova uloga u usvajanju fosfora. Mini simpozij hrvatskog društva za biljnu biologiju (Abstract).
- Lazarević B., Poljak M. (2019). Fiziologija bilja. Sveučilište u Zagrebu Agronomski fakultet.
- Lima J. D., Mosquim P.R., Da Matta F.M. (1999). Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency. Photosynthetica.
- Lynch J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany 112(2): 347–357.
- Maathuis F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology 12: 250–258.
- Muñoz-Azcarate O., M González, A. Santalla, M. (2017). Natural rhizobial diversity helps to reveal genes and QTLs associated with biological nitrogen fixation in common bean. AIMS Microbiology 3(3): 435–466.
- Sinclair T. R., Rufty T. W. (2012). Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Global Food Security 1: 94-98.
- Wilker J., Navabi A., Rajcan I., Marsolais F., Hill B., Torkamaneh D., Pauls K. P. (2019). Agronomic Performance and Nitrogen Fixation of Heirloom and Conventional Dry Bean Varieties Under Low-Nitrogen Field Conditions. Frontiers in Plant Science 10.

Utjecaj nedostatka dušika na neke fiziološke parametre i svojstva korijenovog sustava triju hrvatskih tradicijskih kultivara graha

Sažetak

Grah (*Phaseolus vulgaris* L.) predstavlja važnu mahunarku u svijetu, a nedostatak dušika u njegovom uzgoj može uzrokovati velike negativne promjene vodeći do smanjenja sadržaja proteina u listovima, poput RuBisCO-a, što uzrokuje smanjenje kapaciteta fotosinteze i na kraju rezultira oštećenjem listova i starenjem. Cilj ovog istraživanja bio je analizirati utjecaj nedostatka dušika, tretmanom Hoaglandovom otopinom bez dodanog dušika, na indeks sadržaja klorofila, 'greenness', digitalnu biomasu, kvantni prinos fotosustava II (Y (II)), maksimalni kvantni prinos fotosustava II (F_{ν}/F_{m}) i svojstva korijenovog sustava triju hrvatskih tradicijskih kultivara graha 'Trešnjevac›, 'Zelenčec› i 'Biser›. Tretman nedostatkom dušika uzrokovao je pad indeksa sadržaja klorofila. Manjak dušika također je uzrokovao pad u 'greenness'-u, digitalnoj biomasi te promijene u arhitekturi korijena za sva tri kultivara. Kultivar 'Zelenčec' razvio je najveći volumen korijena, a kultivar 'Trešnjevac' najveći prosječni promjer korijena, digitalnu biomasu i najviši indeks sadržaja klorofila u N- tretmanu.

Ključne riječi: Grah, nedostatak dušika, arhitektura korijena, fotokemijske reakcije