

2020

International Symposium on Agriculture Medunarodni Simpozij

February 16 - 21, 2020 16,-21, veljače 2020, Croatia / Hrvatska Vodice, Olympia Sky Hotel Proceedings Zbornik radova



## Proceedings

55 Hrvatski

15 Međunarodni Simpozij Agronoma

Zbornik radova

#### **Impressum**

Izdavač Published by

Sveučilište u Zagrebu, Agronomski fakultet, Zagreb, Hrvatska University of Zagreb, Faculty of Agriculture, Zagreb, Croatia

Glavni urednici - Editors in Chief

Boro Mioč Ivan Širić

Uređivački odbor - Editorial Board

Aleksandra Perčin Josip Juračak Hrvoje Šarčević Nina Toth Darko Uher Daniel Matulić Miljenko Konjačić Marko Karoglan Goran Fruk Vanja Jurišić

Tehnički urednici - Technical Editors

Ivan Širić

Darija Bendelja Ljoljić

Oblikovanje, prijelom Design, typeset

Martin Šok, www.martinsok.com

Tisak Print

Grafomark d.o.o., Zagreb

Naklada - Edition

40

ISSN 2459-5543

Web page

http://sa.agr.hr

Službeni jezici Simpozija su hrvatski i engleski. The official languages of the Symposium are Croatian and English.

#### Sveučilište u Zagrebu Agronomski fakultet

i

Fakultet agrobiotehničkih znanosti, Sveučilište Josipa Jurja Strossmayera u Osijeku Balkan Environmental Association B.E.N.A

Agronomski i prehrambeno-tehnološki fakultet Sveučilišta u Mostaru, Bosna i Hercegovina Akademija poljoprivrednih znanosti

Biotehniška fakulteta Univerze v Ljubljani, Slovenija

Fakulteta za kmetijstvo in biosistemske vede, Univerza v Mariboru, Slovenija

Hrvatska agronomska komora

ICA Regional Network for Central and South Eastern Europe (CASEE)

Sveučilište Josipa Jurja Strossmayera u Osijeku

Sveučilište u Zagrebu

Sveučilište u Zagrebu Prehrambeno-biotehnološki fakultet

Sveučilište u Zagrebu Šumarski fakultet

#### pod pokroviteljstvom

Ministarstva znanosti i obrazovanja Republike Hrvatske Ministarstva poljoprivrede Republike Hrvatske Ministarstva zaštite okoliša i energetike Republike Hrvatske

#### a u suradnji s

Alltech Hrvatska

Bc Institutom za oplemenjivanje i proizvodnju bilja
Gradskim uredom za poljoprivredu i šumarstvo Grada Zagreba
Hrvatskim agronomskim društvom, Zagreb
Hrvatskim lovačkim savezom
Hrvatskom agencijom za poljoprivredu i hranu, Osijek
Hrvatskom gospodarskom komorom
Institutom za jadranske kulture i melioraciju krša, Split
Institutom za poljoprivredu i turizam, Poreč
Poljoprivrednim institutom Osijek
Sveučilištem u Zadru
Šibensko-kninskom županijom
Veleučilištem u Požegi
Veleučilištem u Slavonskom Brodu
Visokim gospodarskim učilištem u Križevcima

organiziraju

### 55. hrvatski i 15. međunarodni simpozij agronoma 16. - 21. veljače 2020. godine, Vodice, Hrvatska





#### University of Zagreb Faculty of Agriculture

and

Faculty of Agrobiotehnical Sciences, Josip Juraj Strossmayer University of Osijek Balkan Environmental Association B.E.N.A
Faculty of Agriculture and Food Technology, University of Mostar, Bosnia and Herzegovina Academy of Agricultural Sciences
Biotechnical Faculty, University of Ljubljana, Slovenia
Faculty of Agriculture and Life Sciences, University of Maribor, Slovenia
Croatian Chamber of Agriculture
The ICA Regional Network for Central and South Eastern Europe (CASEE)

"Josip Juraj Strossmayer" University of Osijek

University of Zagreb

University of Zagreb Faculty of Food Technology and Biotechnology University of Zagreb Faculty of Forestry

under the patronage of the

Ministry of Science and Education of the Republic of Croatia Ministry of Agriculture of the Republic of Croatia Ministry of Environment and Energy of the Republic of Croatia

in collaboration with

Alltech Croatia
Bc Institute for breeding and seed production
City Office for Agriculture and Forestry, City of Zagreb
Croatian Agronomy Society, Zagreb
Croatian Hunting Federation
Croatian Agency for Agriculture and Food, Osijek
Croatian Chamber of Economy
Institute of Adriatic Crops and Karst Reclamation, Split
Institute of Agriculture and Tourism, Poreč
Agricultural Institute Osijek
University of Zadar
Šibenik-Knin County
College of Požega
College of Slavonski Brod
College of Agriculture at Križevci

organize

## 55<sup>th</sup> Croatian & 15<sup>th</sup> International Symposium on Agriculture February 16 – 21, 2020. Vodice, Croatia



#### Organizacijski odbor Organizing Committee

#### Predsjednik | Chairman

Zoran Grgić, Croatia

#### Članovi | Members

Krunoslav Zmaić, Croatia

Ivan Ostojić, Bosnia and Hercegovina

Frane Tomić, Croatia

Mariana Golumbeanu, Greece

Michal Lostak, Czech

Marijana Ivanek Martinčić, Croatia

Emil Erjavec, Slovenia

Branko Kramberger, Slovenia

Josip Haramija, Croatia Ivan Širić, Croatia

Vlado Guberac, Croatia Damir Boras, Croatia

Dijana Vican, Croatia Blaženka Divjak, Croatia Marija Vučković, Croatia

Tomislav Ćorić, Croatia Emil Tuk, Croatia

Jadranka Frece, Croatia Tibor Pentek, Croatia

Krunoslav Dugalić, Croatia

Luka Burilović, Croatia

Krunoslav Mirosavljević, Croatia

Borislav Miličević, Croatia Zdravko Barać, Croatia Katja Žanić, Croatia

Dean Ban, Croatia Goran Pauk, Croatia

Zvonimir Zdunić, Croatia Zdravko Tušek, Croatia

Lovorka Blažević, Croatia

Josip Jukić, Croatia Ivica Ikić, Croatia Đuro Dečak, Croatia

Ivica Matanić, Croatia

Darija Bendelja Ljoljić, Croatia

#### Znanstveni odbor Scientific Committee

#### Predsjednik | Chairman

Darko Vončina

#### Članovi | Members

Adrijana Filipović

Aleksandra Perčin

Branka Svitlica

Črtimir Rozman

Daniel Matulić

Darko Uher

Dinko Jelkić

Dragan Kovačević

Goran Fruk

Hrvoje Šarčević

Ivana Rukavina

Josip Juračak

Marko Karoglan

Mato Drenjančević

Metka Hudina

Miljenko Konjačić

Mirjana Hruškar

Mirta Rastija

Nina Toth

Pero Mijić

Siniša Srečec

Slaven Zjalić

Smiljana Goreta Ban

Sonja Petrović

Sonja Vila

Teuta Benković Lačić

Tihana Sudarić

Tihomir Florijančić

Tomislav Vinković

Vanja Jurišić

Vladimir Ivezić

Vlatka Rozman

Yusuf Kurucu

Zdravko Mataton

Zvonko Antunović

#### Tajnik | Secretary

Boro Mioč

# Chlorophyll fluorescence as a method for the prediction of germination success in common bean (*Phaseolus vulgaris* L.)

Monika Vidak<sup>1</sup>, Ana Nimac<sup>1</sup>, Zlatko Šatović<sup>1,2</sup>, Jerko Gunjača<sup>1,2</sup>, Boris Lazarević<sup>1,2</sup>, Klaudija Carović-Stanko<sup>1,2</sup>

<sup>1</sup>Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia (e-mail: mvidak@agr.hr)

#### **Abstract**

To explore the utility of chlorophyll fluorescence (CF) as a tool for the prediction of germination success we tested Croatian common bean landraces ('Trešnjevac', 'Biser', 'Zelenčec') differing in seed traits (length, width, height, weight) for seed germination. The significant differences in germination time were observed, landrace 'Biser' being the fastest to germinate. The univariate model including CF parameter  $F_{\nu}/F_{m}$  was not significant while the multivariate Cox model (seed length+ $F_{\nu}/F_{m}$ ) had the highest concordance index. The utility of CF parameter  $F_{\nu}/F_{m}$  as a tool for the prediction of germination success is limited especially when other factors have a clear impact.

Keywords: common bean, landraces, germination, chlorophyll fluorescence (CF)

#### Introduction

Common bean (*Phaseolus vulgaris* L.) is of great agronomic interest worldwide and the most important grain legume for direct human consumption (Angioi et al., 2011). In Croatia, this crop is neglected and in danger of genetic erosion (Carović-Stanko et al., 2017).

Seed from different sources and with different weight may result in similarly high levels of germination under optimal conditions, but the same seed under the more stressful conditions in the field may have very contrasting abilities to establish plants due to differences in their vigour (Lima et al., 2005; Finch-Savage and Bassel, 2015). Seed viability is the ability of the embryo to germinate and is affected by a number of different conditions. Being able to predict seed viability is an important part of the planning process in agriculture (Shaban, 2013). Chlorophyll fluorescence (CF) is a rapid, non-destructive and inexpensive technique that has been used successfully in the evaluation of plant photosynthetic activity and it is seed sorting technique relying on measuring the amplitude of the CF signals of seeds (Gorbe and Calatayud, 2012; Kenanoğlu et al., 2016). It has been used in researches in common bean in leaves infected with bean rust (Peterson and Aylon, 1995), field screening for heat tolerant common bean cultivars (Petkova et al., 2001), as a marker for seed maturity and seed performance of *Brassica oleracea* seeds (Jalink et al., 1998), to assess seedling emergence potential and vigour of commercial tomato and cucumber seed lots (Demir et al., 2013) and to check seed germination performance of stored pepper seeds (Kenanoğlu et al., 2016). There are many different available Chl fluorometers and some of CF parameters that were used trough last few decades are F<sub>0</sub> (minimum fluorescence), Fm (maximum fluorescence), Fv/Fm (maximum quantum yield of photosystem II) etc. (Roháček, 2002; Gorbe and Calatayud, 2012).

The aim of this study was to test the seed germination of the three Croatian common bean landraces ('Trešnjevac', 'Biser', 'Zelenčec') differing in basic seed traits (length, width, height, weight), and to explore the utility of chlorophyll fluorescence as a tool for the prediction of germination success.

<sup>&</sup>lt;sup>2</sup>University of Zagreb, Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia

#### Material and methods

The research material included one hundred seeds of each of the three Croatian common bean landraces ('Trešnjevac', 'Biser', 'Zelenčec') multiplied and collected in a field trial at the University of Zagreb, Faculty of Agriculture, Department of Seed Science and Technology during the year 2018. The experiment was conducted in 2019. The seed length (mm), width (mm) and height (mm) of each seed was measured by Caliper and the weight (g) of each seed was measured by analytical balance.

The determination of seed chlorophyll fluorescence (parameters  $F_0$  (minimum fluorescence) and  $F_v/F_m$  (maximum quantum yield of photosystem II), and chlorophyll fluorescence signal (Chl signal) was done using CropReporter (PhenoVation, Wageningen, the Netherlands). Seeds were placed in a germination chamber under controlled conditions for germination following the recommendations of the ISTA (1993). Seeds were counted at regular time intervals every day to assess the number of germinated and nongerminated seeds.

The differences among landraces in seed germination were tested by survival analysis using Kaplan-Meier method with log-rank test (Kaplan and Meier, 1958) as implemented in R package 'survival' (Therneau and Grambsch, 2000; Therneau, 2015). The impact of landraces and seed traits (length, width, height, weight) on germination success were tested by Cox proportional-hazards model (Cox, 1972) using 'coxph' function from R package 'survival' (Therneau and Grambsch, 2000; Therneau, 2015). The same procedure was used to test the prediction accuracy of the chlorophyll fluorescence parameter F<sub>2</sub>/F<sub>20</sub>.

#### Results and discussion

Results of Kaplan-Meier analysis with log-rank test indicated that there were significant differences (P < 0.05) among three Croatian common bean landraces ('Trešnjevac', 'Zelenčec', 'Biser') in germination success. Landrace 'Trešnjevac' with the largest seeds had the maximum mean germination time (2.19 days), whereas 'Zelenčec' had medium seeds and mean germination time 1.82 days, while 'Biser' with the smallest seeds had the shortest mean germination time (1.41 days). Similarly, a Cox regression model for germination success that included landraces as a source of variation was significant ( $\chi^2 = 20.92$ ; P < 0.05). In comparison to landrace 'Biser' used as a reference (Hazard Ratio = 1), 'Trešnjevac' reduced the germination success by a factor of HR = 0.43 (or 57%) while 'Zelenčec' by HR = 0.59 (41%) (Table 1).

Table 1. Germination success expressed in terms of regression coefficients ( $\beta$ ), Hazard Ratios (HR) with 95% confidence intervals (CI) and P values (Wald test), as estimated using a Cox regression model with time to germination as time scale. The model compares germination of seeds of the landrace 'Trešnjevac' and 'Zelenčec' to seeds of the landrace 'Biser' as reference (HR = 1.00).

| Landrace     | β      | HR   | CI (95%)  | $P_{Wald}$ |
|--------------|--------|------|-----------|------------|
| 'Trešnjevac' | -0.836 | 0.43 | 0.33-0.58 | ***        |
| 'Zelenčec'   | -0.530 | 0.59 | 0.44-0.78 | ***        |

ns – non-significant; \*significant at P < 0.05; \*\*significant at P < 0.01; \*\*\*significant at P < 0.001

A series of separate univariate Cox regression models that included four seed traits size (length, width, height, weight) and chlorophyll fluorescence parameters revealed that only parameter  $F_v/F_m$  was significant while all the seed traits had a significant impact on germination success. In all cases, the negative  $\beta$  coefficients indicated that all the variables had a negative effect of germination success. For every 1-unit increase (mm) of seed length, width and height, the germination success decreased by the factor of HR = 0.89 (11%), HR = 0.73 (27%) and HR = 0.76 (24%) in relation to overall germination success while for every 1-unit increase (g) of seed weight germination success was reduced by the factor of HR = 0.13 (87%). However, the values of  $F_v/F_m$  were from 0.16 to 0.33 and these values failed to predict germination success (Table 2.)

Table 2. Germination success as influenced by seed size (length, width, height, weight) or predicted by chlorophyll fluorescence parameter  $F_v/F_m$ , as estimated using separate univariate Cox regression models with time to germination as time scale.

| Variable      | β      | HR   | CI (95%)  | $P_{Wald}$  |
|---------------|--------|------|-----------|-------------|
| Seed length   | -0.121 | 0.89 | 0.85-0.92 | wala<br>*** |
| Seed width    | -0.322 | 0.73 | 0.62-0.85 | ***         |
| Seed height   | -0.277 | 0.76 | 0.68-0.84 | ***         |
| Seed weight   | -2.028 | 0.13 | 0.06-0.28 | ***         |
| $F_{v}/F_{m}$ | -3.433 | 0.03 | 0.00-0.28 | ns          |

 $\beta$  - regression coefficient; HR - Hazard Radion; CI (95%) - confidence intervals;  $P_{Wald}$  - significance of the Wald test (ns – non-significant; \*significant at P < 0.05; \*\*significant at P < 0.01; \*\*\*significant at P < 0.001)

The use of  $F_v/F_m$  in prediction of germination success was further explored by multivariate Cox regression models that included  $F_v/F_m$  values with the four seed traits. Two out of four models gave significant results for  $F_v/F_m$  (Table 3) and had a higher concordance index (defined as a fraction of correct predictions) in comparison to the same models without  $F_v/F_m$  (Table 4). The best model included seed length and  $F_v/F_m$  and it had a concordance index of 0.750. However, there were no significant differences in concordance indices of the six best models presented in Table 4.

Table 3. Multivariate Cox regression models for germination success in which chlorophyll fluorescence parameter  $F_y/F_m$  gave significant P values

| Model | Variable      | β      | HR   | CI (95%)  | $P_{Wald}$ |  |
|-------|---------------|--------|------|-----------|------------|--|
| 1     | Seed length   | -0.124 | 0.88 | 0.85-0.92 | ***        |  |
|       | $F_{v}/F_{m}$ | -3.720 | 0.02 | 0.00-0.87 | *          |  |
| 2     | Seed weight   | -2.059 | 0.13 | 0.06-0.27 | ***        |  |
|       | $F_{v}/F_{m}$ | -3.631 | 0.03 | 0.00-0.97 | *          |  |

 $\beta$  - regression coefficient; HR - Hazard Radion; CI (95%) - confidence intervals;  $P_{wald}$  - significance of the Wald test (ns – non-significant; \*significant at P < 0.05; \*\*significant at P < 0.01; \*\*\*significant at P < 0.001)

Table 4. Goodness-of-fit of the six best Cox regression models for germination success as compared using concordance index (C-index; standard error: SE) defined as a fraction of correct predictions. P values were obtained by comparing models to the best one (Seed length +  $F_v/F_m$ ) using Z-test.

| No. | Model variables         | C-index | SE    | $P_{Z	ext{-test}}$ |
|-----|-------------------------|---------|-------|--------------------|
| 1   | Seed length + $F_v/F_m$ | 0.750   | 0.025 | -                  |
| 2   | Seed height             | 0.745   | 0.024 | ns                 |
| 3   | Seed weight $+ F_v/F_m$ | 0.742   | 0.025 | ns                 |
| 4   | Landrace                | 0.736   | 0.023 | ns                 |
| 5   | Seed length             | 0.736   | 0.026 | ns                 |
| 6   | Seed weight             | 0.728   | 0.026 | ns                 |

In concordance with previous studies (Borji et al., 2007; De Ron et al., 2016), the results indicate that landraces with larger seeds take more time to germinate probably because it need more time for water absorption. The utility of  $F_v/F_m$  in prediction of overall germination success is generally limited although it could improve the concordance of the models that include some other seed traits.

#### Conclusion

There are significant differences among Croatian common bean landraces ('Trešnjevac', 'Biser', 'Zelenčec') in germination time most likely due to differences in basic seed traits (length, width, height, weight) as all the traits have a significant impact *per se* on germination success. It seems that the utility of chlorophyll fluorescence parameter  $F_{\gamma}$   $F_{m}$  as a tool for the prediction of germination success is limited especially in cases in which other factors have a clear impact on germination time.

#### Acknowledgement

This research has been funded by the project KK.01.1.1.01.0005 Biodiversity and Molecular Plant Breeding, Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Zagreb, Croatia.

#### References

- Angioi S.A., Rau D., Nanni L., Bellucci E., Papa R., Attene G. (2011). The genetic make-up of the European landraces of the common bean. Plant Genetic Resources 9: 197-201.
- Borji M., Ghorbanli M. Sarlak M. (2007). Some Seed Traits and Their Relationships to Seed Germination, Emergence Rate Electrical Conductivity in Common Bean (*Phaseolus vulgaris* L.). Asian Journal of Plant Sciences 6(5): 781-787.
- Carović-Stanko K., Liber L., Vidak M., Barešić B., Grdiša M., Lazarević B., Šatović Z. (2017). Genetic Diversity of Croatian Common Bean Landraces. Frontiers in Plant Science 8: 604.
- Cox D.R. (1972). Regression models and life-tables. Journal of the Royal Statistical Society: Series B 34: 187-220.
- De Ron A.M., Rodiño A.P., Santalla M., González A.M., Lema M.J., Martín I., Kigel J. (2016). Seedling Emergence and Phenotypic Response of Common Bean Germplasm to Different Temperatures under Controlled Conditions and in Open Field. Frontiers in Plant Science 7: 1087.
- Demir I., Kenanoglu B.B., Jalink H., Mavi K. (2013). Chlorophyll Fluorescence Sorting Method to Improve Seedling Emergence Potential and Vigour of Commercial Tomato and Cucumber Seed Lots. International Journal of Agriculture and Forestry 3(7): 333-338.
- Finch-Savage W.E., Bassel G.W. (2015). Seed vigour and crop establishment: extending performance beyond adaptation. Journal of Experimental Botany 67(3): 567-591.
- Gorbe E., Calatayud A. (2012). Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae 138: 24-35.
- ISTA (1993). International Rules for Seed Testing. International Seed Testing Association, Zürich, Switzerland.
- Jalink H., van der Schoor R., Frandas A., van Pijlen J.G., Bino R.J. (1998). Chlorophyll fluorescence of Brassica oleracea seeds as a non-destructive marker for seed maturity and seed Performance. Seed Science Research 8: 437-443.
- Kaplan E.L., Meier P. (1958). Nonparametric estimation from incomplete samples The Journal of the Acoustical Society of America 53: 457-481.
- Kenanoğlu B.B., Demir I., Jalink H. (2016). Improvement of Seed Germination Performance of Stored Commercial Pepper Seed Lots with Chlorophyll Fluorescence Sorting Method. American Journal of Experimental Agriculture 10(4): 1-6.
- Lima E.R., Santiago A.S., Araújo A.P., Teixeira M.G. (2005). Effects of the size of sown seed on growth and yield of common bean cultivars of different seed sizes. Brazilian Journal of Plant Physiology 17(3): 273-281.
- Peterson R.B., Aylor D.E. (1995). Chlorophyll Fluorescence Induction in Leaves of *Phaseolus vulgaris* Infected with Bean Rust (*Uromyces appendiculatus*). Plant Physiology 108: 163-171.
- Petkova V., Denev I.D., Cholakov D., Porjazov I. (2007). Field screening for heat tolerant common bean cultivars (*Phaseolus vulgaris* L.) by measuring of chlorophyll fluorescence induction parameters. Scientia Horticulturae 111: 101-106.
- Roháček K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40(1): 13-29.
- Shaban M. (2013). Study on some aspects of seed viability and vigour. International Journal of Advanced Biological and Biomedical Research 1(12): 1692-1697.
- Therneau T.M., Grambsch P.M. (2000). Modelling Survival Data: Extending the Cox Model. Springer, New York.
- Therneau T. (2015). A Package for Survival Analysis in S. version 2.38. https://CRAN.R-project.org/package=survival.

## Fluorescencija klorofila kao metoda za određivanje klijavosti sjemena graha (*Phaseolus vulgaris* L.)

#### Sažetak

Kako bi se utvrdila korisnost fluorescencije klorofila (CF) kao alata za predviđanje klijavosti sjemena, testirana je klijavost hrvatskih tradicijskih kultivara graha ('Trešnjevac', 'Biser', 'Zelenčec') koji se razlikuju u svojstvima sjemena (dužina, širina, debljina, težina). Uočene su značajne razlike u vremenu klijanja pri čemu je 'Biser' najbrže klijao. Univarijantni model, koji je uključivao parametar fluorescencije klorofila  $F_v/F_m$ , nije bio značajan, dok je multivarijantni Cox-ov model (duljina sjemena+ $F_v/F_m$ ) imao najviši indeks podudaranja. Korisnost parametra fluorescencije klorofila  $F_v/F_m$  kao alata za predviđanje klijanja je ograničena, posebno u slučajevima kada i drugi čimbenici imaju utjecaj.

Ključne riječi: grah, tradicijski kultivari, klijanje, fluorescencija klorofila